98 research outputs found

    One-year delayed effect of fog on malaria transmission: a time-series analysis in the rain forest area of Mengla County, south-west China

    Get PDF
    Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide

    Elevation of circulating big endothelin-1: an independent prognostic factor for tumor recurrence and survival in patients with esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelin(ET) axis plays a key role in many tumor progression and metastasis via various mechanisms such as angiogenesis, mediating extracellular matrix degradation and inhibition of apoptosis. However, there is limited information regarding the clinical significance of plasma big ET-1 levels in esophageal cancer patients. Circulating plasma big ET-1 levels were measured in patients with esophageal squamous cell carcinoma(ESCC) to evaluate the value of ET-1 as a biomarker for predicting tumor recurrence and patients survival.</p> <p>Methods</p> <p>Preoperative plasma big ET-1 concentrations were measured by an enzyme linked immunosorbent assay(ELISA) in 108 ESCC patients before surgery, and then again at 1,2,3,10 and 30 days after curative radical resection for ESCC. The association between preoperative plasma big ET-1 levels and clinicopathological features, tumor recurrence and patient survival, and their changes following surgery were evaluated.</p> <p>Results</p> <p>The preoperative plasma big ET-1 levels in ESCC patients were significantly higher than those in controls. And there was a significant association between plasma big ET-1 levels and disease stage, as well as invasion depth of the tumor and lymph node status. Furthermore, plasma big ET-1 levels decreased significantly after radical resection of the primary tumor and patients with postoperative recurrence had significantly higher plasma big ET-1 levels than that of patients without recurrence. Finally, the survival rate of patients with higher plasma big ET-1 concentrations (>4.3 pg/ml) was significantly lower than that of patients with lower level (≤ 4.3 pg/ml). Multivariate regression analysis showed that plasma big ET-1 level is an independent prognostic factor for survival in patients with ESCC.</p> <p>Conclusion</p> <p>Plasma big ET-1 level in ESCC patients may reflect malignancy and predict tumor recurrence and patient survival. Therefore, the preoperative plasma big ET-1 levels may be a clinically useful biomarker for choice of multimodality therapy in ESCC patients.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Neural Prescribed Performance Control for Uncertain Marine Surface Vessels without Accurate Initial Errors

    No full text
    This paper deals with the problems concerned with the trajectory tracking control with prescribed performance for marine surface vessels without velocity measurements in uncertain dynamical environments, in the presence of parametric uncertainties, unknown disturbances, and unknown dead-zone. First, only the ship position and heading measurements are available and a high-gain observer is used to estimate the unmeasurable velocities. Second, by utilizing the prescribed performance control, the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed via the preprocessing. At last, based on neural network approximation in combination with backstepping and Lyapunov synthesis, a robust adaptive neural control scheme is developed to handle the uncertainties and input dead-zone characteristics. Under the designed adaptive controller for marine surface vessels, all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB), and the prescribed transient and steady tracking control performance is guaranteed. Simulation studies are performed to demonstrate the effectiveness of the proposed method

    ECG-based identity recognition via deterministic learning

    No full text
    In this paper, a novel method based on electrocardiogram (ECG) signals is proposed for identity recognition. A unique feature called dynamics, which is fundamentally different from features used in literature, is extracted from ECG signals and used for identity recognition. Deterministic learning, a recently proposed machine learning approach, is used to model the dynamics of training ECG signals. A set of estimators employing the modelling results of training ECG signals is constructed. Through comparing the test ECG signal (measured from a subject to be recognized) with the estimators, a set of errors can be obtained and used to measure the similarity between the test and the training ECG signals. The test ECG signal is recognized in accordance with the smallest error, and then the subject can be recognized rapidly. Experimental results indicate that the proposed method is reliable and efficient for identity recognition

    Energy Shaping Control for Wireless Power Transfer System in Automatic Guided Vehicles

    No full text
    This paper proposes an energy shaping controller of a DC/DC converter for automatic guided vehicles (AGVs) wireless power transfer (WPT). A transformer is inserted after the LCC topology to improve the transfer power, and the DC/DC boost converter is added before this topology to obtain desired systematic power dynamically. The system power transfer model is derived based on the idea of voltage transformation and the desired power can be implemented indirectly through regulating desired output voltage of DC/DC converter. With the proposed controller, this WPT system will have a much better dynamic performance and the effective working time can be increased significantly. Furthermore, this paper proposes dynamical regulation strategy for output power to get real time target power according to the charging curve of the battery. Simulation and experimental results verified the control performance of the proposed control scheme. A WPT prototype with power up to 1.65 kW was built, and 92.12% efficiency from DC power source to battery load is achieved, which is 4% higher than that obtained by the conventional PID method

    A Novel Control Strategy for Uninterruptible Power Supply Based on Backstepping and Fuzzy Neural Network

    No full text
    This paper proposes a novel control strategy for controlling the uninterruptible power supply (UPS) inverter, which is based on backstepping control theory combined with a fuzzy neural network (FNN). The advantage of backstepping control is that it can decompose a complex system into multiple subsystems, stabilize the control object according to Lyapunov stability theory, and simplify the controller design. However, it requires prior knowledge of multiple system parameters. FNN can approximate arbitrary nonlinear functions and system errors, which can reduce the parameters required for controller design. Hence, Combining the advantages of both methods, a UPS inverter control method with only a few parameters is designed. Then the sliding mode gain is added to compensate for the fuzzy neural network to reduce the chattering when the system operates and ensure the needed power quality. To verify the effectiveness of the proposed control system, the effectiveness of the proposed method is verified by a simulation experiment platform
    corecore